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a b s t r a c t

An analytical solution is developed for three-dimensional flow towards a partially penetrating large-
diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite
extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically.
Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an
assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined
aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and
(2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of
model-predicted results shows that aquitard leakage leads to significant departure from the unconfined
solution without leakage. The investigation of dimensionless time-drawdown relationships shows that
the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore
storage effects.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The assumption that the water flow and storage in the unsatu-
rated zone is insignificant for unconfined aquifer tests was first
questioned by Nwankwor et al. [1] and later by Akindunni and
Gillham [2] based upon analysis of data collected during pumping
tests in Borden, Ontario Canada. Analyzing the collected tensiome-
ter data and soil moisture measurements, the authors concluded
that the proper inclusion of unsaturated zone in analytical models
used for pumping test analysis would lead to improved estimates
of aquifer specific yield. Several analytical solutions were devel-
oped that account for the unsaturated zone flow to a pumping well
in an unconfined aquifer, taking into account the unsaturated zone
[3–5]. These models consider the unsaturated zone effects by cou-
pling the governing flow equations at the water table; the satu-
rated zone governed by the diffusion equation and the vadose
zone governed by the linearized unsaturated zone Richards equa-
tion, using the linearization of Kroszynski and Dagan [6]. These
models considered the limiting case where the pumping well has
zero radius. For detailed discussion regarding the fundamental dif-
ferences between these three models readers are directed to Mish-
ra and Neuman [5].

Drawdown due to pumping a large-diameter (e.g., water sup-
ply) well in an unconfined aquifer is affected by wellbore storage
[7]. Narasimhan and Zhu [8] used a numerical model to demon-
strate that early time drawdown in an unconfined aquifer tends
ll rights reserved.
to be dominated by wellbore storage effects. Mishra and Neuman
[9] developed an analytical unconfined solution, which considers
both pumping-well wellbore storage capacity, and three-
dimensional axi-symmetrical unsaturated zone flow. They repre-
sented unsaturated zone constitutive properties using exponential
models, which result in governing equations that are mathemati-
cally tractable, while being sufficiently flexible to be fit to other
widely used constitutive models [10–13]. However, Mishra and
Neuman [9] considered the unconfined aquifer to be resting on
an impermeable boundary and therefore did not account for the
potential effects of leakage from an underlying formation (e.g., an
aquitard or fractured bedrock). The classical theory of leakage for
confined aquifers was originally developed by Hantush [14]
assuming steady-state vertical flow in overlying and underlying
aquitards and horizontal flow in the pumped aquifer. Hantush
[15] later modified the theory of confined leaky aquifers to include
transient vertical aquitard flow, giving asymptotic expressions for
early and late times. Neuman and Witherspoon [16,17] developed
a more complete analytical solution for the more general multiple
aquifer flow problem, but did not consider general three-dimen-
sional aquitard flow.

Yatov [18] first investigated the effect of leakage from underly-
ing strata on unconfined aquifer flow. He use the model of Boulton
[19] to account for the water table and considered only vertical
flow in aquitard. Ehlig and Halepaska [20] investigated leaky-
unconfined flow through a finite-difference simulation, which
coupled the Boulton [19] and Hantush [14] models to account for
leakage across the aquifer-aquitard boundary. Zlotnik and Zhan
[21] developed an analytical solution for the flow towards a fully
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penetrating zero-radius well in a coupled unconfined aquifer aqui-
tard system where both the unsaturated zone and the horizontal
aquitard flow are neglected. Both Zhan and Bian [22] and Zlotnik
and Zhan [21] developed analytical and semi-analytical solutions
for leakage due to pumping, building on the works of Hantush
[14] and Butler and Tsou [23]. Both Zhan and Bian [22] and Zlotnik
and Zhan [21] neglect horizontal flow in aquitards. Purely vertical
aquitard flow was justified for limiting aquifer/aquitard hydraulic
conductivity contrasts by Neuman and Witherspoon [17]. Both
Zhan and Bian [22] and Zlotnik and Zhan [21] only consider a ver-
tically unbounded aquitard. Malama et al. [24] developed a solu-
tion for three-dimensional aquitard flow in a finite thickness
aquitard, but considered the zero-radius pumping well to be fully
penetrating and ignored the flow in unsaturated zone. Here, we de-
velop a more general leaky-unconfined aquifer solution by consid-
ering a partially penetrating large-diameter well and including the
effects of unsaturated zone flow following Mishra and Neuman [9].
The solution is used to investigate the effect of an aquitard on
drawdown in overlying unconfined aquifer. We conclude by inves-
tigating the effects of wellbore storage capacity and the unsatu-
rated zone on drawdown observed in the aquitard.
2. Leaky-unconfined theory

2.1. Statement of Problem

We consider an infinite radial compressible unconfined aquifer
above a finitely thick aquitard (Fig. 1). The aquifer and aquitard are
each spatially uniform, homogeneous and anisotropic, with con-
stant specific storage Ss and Ss1, respectively (a subscript 1 indi-
cates aquitard related properties). The aquifer has a fixed ratio
KD = Kz/Kr between vertical and horizontal saturated hydraulic con-
ductivities, Kz and Kr, respectively. The aquitard vertical and hori-
zontal hydraulic conductivities are Kz1 and Kr1. The aquifer is
fully saturated below an initially horizontal water table at eleva-
tion z = b. The water table is defined as a w = 0 isobar where w is
pressure head. A saturated capillary fringe at non-positive pressure
wa 6 w 6 0 extends from the water table to the w = wa isobar;
wa 6 0 is the pressure head required for air to enter a saturated
Fig. 1. Schematic representation of leaky unconfined aquifer-a
medium. The saturated hydraulic system (aquifer and aquitard)
is at uniform initial hydraulic head h0 = b + wa before pumping.
At time t = 0, pumping begins at a constant volumetric flowrate Q
from a well of finite radius rw and wellbore storage coefficient Cw

(volume of water released from storage in the pumping well per
unit drawdown in the well casing). The pumping well is completed
across the aquifer between depths l and d below the aquifer top.
Under these conditions the drawdown s(r,z, t) = h(r,z,0) � h(r,z, t)
in the saturated zone is governed by the diffusion equation
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along with far-field boundary condition

sð1; z; tÞ ¼ 0; ð2Þ

the no-flow condition at the portion of the well casing that is not
open to the aquifer
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and the wellbore storage mass-balance expression
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Flux is assumed constant across the well screen (see Zhan and
Zlotnik [25] for a discussion of this assumption’s validity). The cor-
responding linearized unsaturated flow equations [5] are
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where r(r,z, t) is drawdown in the unsaturated zone, k0(z) is relative
permeability and C0(z) is moisture capacity (slope of the curve rep-
resenting water saturation as a function of pressure head) functions
with the functional dependence limitations on the respective con-
stitutive models

k0ðzÞ ¼ kðh0Þ; C0ðzÞ ¼ Cðh0Þ; ð6Þ
quitard system geometry with finite radius pumping well.



Table 1
Fundamental properties table.

a Hankel transform parameter L�1

ac Exponent in moisture retention curve or sorptive number L�1

ak Exponent in Gardner relative hydraulic conductivity model L�1

b Saturated thickness of unconfined aquifer before pumping begins L
b1 Thickness of aquitard L
Cw Wellbore storage coefficient L2

d Distance from top of screened interval to top of aquifer L
h Hydraulic head (sum of pressure and elevation heads) L
Kr Aquifer radial hydraulic conductivity LT�1

Kr1 Aquitard radial hydraulic conductivity LT�1

Kz Aquifer vertical hydraulic conductivity LT�1

Kz1 Aquitard vertical hydraulic conductivity LT�1

l Distance from bottom of screened interval to top of aquifer L
L Thickness of vadose zone before pumping begins L
n Finite cosine transform parameter �
p Laplace transform parameter T�1

Q Volumetric pumping rate L3T�1

r Radial distance from the center of pumping well L
rw Diameter of pumping well L
s Drawdown in aquifer; change in hydraulic head since pumping began L
s1 Drawdown in aquitard; change in hydraulic head since pumping began L
Se Effective saturation �
Ss Aquifer specific storage L�1

Ss1 Aquitard specific storage L�1

Sy Aquifer drainable porosity or specific yield �
t Time since pumping began T
z Vertical distance from the bottom of the aquifer, positive up L
zi Elevation to top (i = 1) and bottom (i = 2) of monitoring interval L
h0 Initial volumetric water content �
hr Residual volumetric water content �
hs Saturated volumetric water content �
r Drawdown in unsaturated zone; change in hydraulic head since pumping began L
w Pressure head (less than zero when unsaturated) L
wa Air-entry pressure L
wk Pressure for saturated hydraulic conductivity L

Table 2
Derived quantities table.

KD Kz/Kr Anisotropy ratio
rD r/b Dimensionless radial coordinate
zD z/b Dimensionless vertical coordinate
dD d/b Dimensionless distance to top of screen interval
lD l/b Dimensionless distance to bottom of screen interval
pD pt Dimensionless Laplace parameter
rwD rw/r Dimensionless well radius
RKD KD1/KD Ratio of aquitard and aquifer anistropies
RKr Kr1/Kr Ratio of aquitard and aquifer horizontal hydraulic conductivities
RKz Kz1/Kz Ratio of aquitard and aquifer vertical hydraulic conductivities
Ras as1/as Ratio of aquitard and aquifer saturated hydraulic diffusivities
Rb b1/b Ratio of aquitard and aquifer thicknesses
as Kr/Ss Aquifer hydraulic diffusivity
as1 Kr1/Ss1 Aquitard hydraulic diffusivity
zDi

zi/b Dimensionless elevation to top (i = 1) and bottom (i = 2) of monitoring interval
akD akb Dimensionless Gardner hydraulic conductivity model exponent
acD acb Dimensionless moisture retention model exponent
waD wa/b Dimensionless air-entry pressure
wkD wk/b Dimensionless pressure for saturated hydraulic conductivity
CwD Cw=ðpSsbr2

wÞ Dimensionless wellbore storage coefficient

ts ast/r2 Dimensionless time
sD 4PKrbs=Q dimensionless aquifer drawdown
sD1 4PKrbs1=Q dimensionless aquitard drawdown
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where h0 is the initial volumetric moisture content. Eq. (5) depends
on the initial condition

rðr; z;0Þ ¼ 0; ð7Þ

the far-field boundary condition

rð1; z; tÞ ¼ 0 ð8Þ

the no-flow condition at the ground surface
@r
@z

����
z¼bþL

¼ 0; r P rw ð9Þ

and the no-flow condition at the well casing

r
@r
@r

� �
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¼ 0; b < z < bþ L: ð10Þ

The interface conditions providing continuity across the water table
are
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s� r ¼ 0; r P rw; z ¼ b; ð11Þ
@s
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¼ 0; r P rw; z ¼ b: ð12Þ

The aquitard drawdown s1(r,z, t) is governed by
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Additionally, aquitard flow satisfies no-flow conditions at the bot-
tom and center of the flow system
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The interface condition across the aquifer-aquitard boundary
are

s� s1 ¼ 0; r P rw; z ¼ 0 ð15Þ

and

Kz
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@z
; r P rw; z ¼ 0: ð16Þ

Like Mishra and Neuman [5], we represent the aquifer moisture
retention curve using an exponential function

Se ¼
hðwÞ � hr

Sy
¼ eac ðw�waÞ; ac P 0; wa P 0; ð17Þ

where hr is residual volumetric water content, Sy = hs � hr is drain-
able porosity or specific yield and Se is effective saturation. We also
adopt the exponential relative hydraulic conductivity model [10],

kðwÞ ¼ eakðw�wkÞ

1

(
w 6 wk;

w > wk;

�
ak P 0; wk P 0; ð18Þ

with parameters ak and wk that generally differ from ac and wa in
(17). The parameters ak and ac represent the exponent in the expo-
nential models for hydraulic conductivity and effective saturation,
respectively. The parameter wk represents a pressure head above
which relative hydraulic conductivity is effectively equal to unity,
which is sometimes but not always equal to the air entry pressure
head wa. In addition to rendering the resulting equations mathe-
matically tractable, these exponential constitutive models are suffi-
ciently flexible to provide acceptable fits to standard constitutive
models such as those mentioned earlier.

2.2. Point drawdown in saturated and unsaturated zones of aquifer
and aquitard

Following Mishra and Neuman [9], it is shown in Appendix A
that, drawdown in the saturated zone can be expressed as

s ¼ sC þ sU ; ð19Þ

where sC is solution for flow to a partially penetrating well of finite
radius in a confined aquifer and sU is a correction accounting for the
underlying aquitard, water table and unsaturated zone effects. The
Laplace transformed solution �sC is given by Mishra and Neuman [9]
as

�sCðrD; zD;pDÞ ¼
Q
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w

� �
; ts ¼ ast=r2; p is Laplace
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pD=ts þ r2

DKDn2p2
q

, and K0

and K1 are second-kind modified Bessel functions of orders zero
and one. The Laplace transformed unsaturated zone drawdown �r
is given by Mishra and Neuman [9] and is presented in Appendix
D for sake of completeness.

The Laplace transformed �sU derived in Appendix B is

�sUðrD; zD; pDÞ ¼
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Table 1 lists fundamental quantities and Table 2 lists the
derived quantities.

The Laplace transformed aquitard drawdown derived in Appen-
dix C is

�s1ðrD; zD; pDÞ ¼
Z 1

0

ð��scÞzD¼0 þ q1 þ q2

coshðl1b1=bÞ cosh½l1ðzD þ RbÞ�

� r2
DKD

r2 y J0 yK1=2
D rD

h i
dy ð22Þ

where ðscÞzD¼0 is the Laplace–Hankel transformed confined aquifer
drawdown and is defined in Appendix D. The time domain equiva-
lents sC, sU, s1 and r of �sC ;�sU ;�s1 and �r are obtained through numer-
ical Laplace transform inversion using the algorithm of de Hoog
et al. [26].

2.3. Vertically averaged drawdown in piezometer or observation well

Drawdown in an observation well (Fig. 1) that is completed in
the aquifer between elevations zD1 = z1/b and zD2 = z2/b is found
by averaging the point drawdown over screen interval,

szD2�zD1 ðrD; tsÞ ¼
1

zD2 � zD1

Z zD2

zD1

sHðrD; zD; tsÞdzD; ð23Þ

where sw can be either aquifer drawdown s, aquitard drawdown s1,
or a combination of the two, depending on the observation well
screen interval.

2.4. Delayed piezometer or observation well response

When water level is measured in a piezometer or observation
well having storage coefficient C the water level observed in the
borehole is delayed in time. Following Mishra and Neuman [9],
the measured (delayed) drawdown sm can be expresses in terms
of formation drawdown s via

sm ¼ sð1� e�t=tB Þ; ð24Þ
where tB is basic (characteristic) monitoring well time lag. The
dimensionless equivalent of (24) is

smD ¼ sDð1� e�ts=tBs Þ; ð25Þ
where tBs = astB/r2, and r is the radial distance to the monitoring
location.

3. Model-predicted drawdown behavior

We illustrate the impacts of an underlying aquitard on uncon-
fined aquifer drawdown for the case where KD = 1, Ssb/Sy = 10�3,
akD = acD = 10, waD = wkD, dD = 0, CwD = 103, lD = 0.6 and rw/b = 0.02,
where akD = akb, acD = acb, waD = wa/b and wkD = wk/b. We also
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investigate the effects that wellbore storage capacity of the
pumping well, the unconfined aquifer, and the unsaturated zone
have on aquitard drawdown.
3.1. Dimensionless unconfined aquifer time-drawdown

We start by considering drawdown at two locations in the
unconfined aquifer saturated zone, one location closer to water ta-
ble (zD = 0.75) and the other closer to the aquitard-aquifer bound-
ary (zD = 0.25). Fig. 2a and b compare variations in dimensionless
drawdown sD(rD,zD, ts) = (4pKrb/Q)s(rD,zD, ts) with dimensionless
time at zD = 0.75 and zD = 0.25 predicted by our proposed solution
and the solutions of Mishra and Neuman [9], Neuman [27], and the
modified solution of Malama et al. [24] (modified to include the
partially penetrating pumping well effects, as done in Malama
et al. [28] for a multi-aquifer system). The solutions of Neuman
[27] and Malama et al. [24] do not include wellbore storage effects,
and therefore they overestimate drawdown at early time. Both of
these solutions also ignore the unsaturated zone above the water
table, considering the water table a material boundary [27]. Our
proposed solution follows Mishra and Neuman [9] when leakage
effects are minor, but our solution predicts less drawdown when
leakage effects are significant. It is seen in Fig. 2b that solution of
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Fig. 2. Dimensionless leaky-unconfined aquifer drawdown versus dimensionless
0; lD ¼ 0:6; CwD ¼ 102; RKr ¼ RKz ¼ 10�2; RSs ¼ 10�2;Rb !1 and (a) zD = 0.75 (b) zD = 0.
[27] are also shown.
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Fig. 3. Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time
0; lD ¼ 0:6; CwD ¼ 102; RSs ¼ 10�2; Rb !1 when RKz varies and (a) RKR ¼ 10�6 (b) RKr ¼
Mishra and Neuman [9] overestimates drawdown near the aqui-
tard at intermediate time because it does not include aquitard
leakage. Near the water table (Fig. 2a) the effects of aquitard leak-
age are minimal and our proposed solution approaches Mishra and
Neuman [9] at all times.

Fig. 3a and b show dimensionless time-drawdown variations at
dimensionless radial distance rD = 0.5 and dimensionless uncon-
fined aquifer saturated zone elevation zD = 0.25 with different val-
ues of RKz ¼ Kz1=Kz when the radial aquitard hydraulic conductivity
is small (RKr ¼ Kr1=Kr ¼ 10�6) and large (Rkr ¼ 1:0). When the ra-
dial hydraulic conductivity in aquitard is negligible (Rkr ¼ 10�6),
aquitard flow is predominately vertical; larger values of vertical
aquitard hydraulic conductivity cause decreases in intermediate
time drawdown (Fig. 3a). It is seen from Fig. 3b that when aquitard
horizontal hydraulic conductivity is large (Rkr ¼ 1) the amount
drawdown is reduced from further increases in aquitard vertical
hydraulic conductivity also extend to the later time.

Fig. 4 depicts the effect of RKr on the dimensionless time-draw-
down at dimensionless radial distance rD = 0.5 and dimensionless
unconfined aquifer saturated zone elevation zD = 0.25 when
RKz ¼ 0:1. Radial flow in the aquitard results in less drawdown at
late time than that predicted by Mishra and Neuman [9], who do
not account for aquitard leakage.
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time at rD = 0.5 when KD ¼ 1; Ssb=Sy ¼ 10�3; akD ¼ acD ¼ 10; waD ¼ wkD ; dD ¼
25. Solutions of Mishra and Neuman [9], modified Malama et al. [24], and Neuman
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at rD = 0.5 and zD = 0.25 for KD ¼ 1; Ssb=Sy ¼ 10�3; akD ¼ acD ¼ 10; waD ¼ wkD; dD ¼
1. Solution of Mishra and Neuman [9] is also shown.
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Fig. 5. Dimensionless leaky-unconfined aquifer drawdown versus dimensionless
time at rD = 0.5 and zD = 0.25 for KD = 1, Ssb/Sy = 10�3, akD = acD = 10, waD = wkD,
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Mishra and Neuman [9] is also shown.
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Fig. 4. Dimensionless leaky-unconfined aquifer drawdown versus dimensionless
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dD ¼ 0; lD ¼ 0:6; CwD ¼ 102; RSs ¼ 10�2; RKz ¼ 0:1 and Rb ?1 when RKr varies.
Solution of Mishra and Neuman [9] is also shown.
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Fig. 5 presents the effect of hydraulic conductivity of an isotro-
pic aquitard on dimensionless time-drawdown at dimensionless
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radial distance rD = 0.5 and dimensionless unconfined aquifer satu-
rated zone elevation zD = 0.25. When aquitard hydraulic conductiv-
ity is at least two orders of magnitude smaller than the unconfined
aquifer, the effects of leakage on the aquifer drawdown are negli-
gible. This is in agreement with findings of Neuman and Wither-
spoon [16] for confined aquifers. They found errors <5%
attributable to the vertical aquitard flow assumption, when the
hydraulic conductivity contrast between the aquifer and aquitard
was greater than a factor of 100. Fig. 5 also presents a case with
the aquitard hydraulic conductivity is larger than the aquifer. Be-
cause the proposed model accounts for general three-dimensional
flow in underlying zone, we can consider the case where the lower
layer is more permeable than the aquifer (Rkr ¼ 2).

Fig. 6 shows how the dimensionless unconfined aquifer time-
drawdown is affected by aquitard thickness. When the aquitard
thickness is less than the initial unconfined aquifer saturated thick-
ness (Rb 6 1) aquitard leakage only affects the time-drawdown
curve at intermediate time. Fig. 6 shows that further increases in
aquitard thickness beyond eight times the initial unconfined aqui-
fer saturated zone thickness have negligible effect on the time-
drawdown curve.
3.2. Dimensionless aquitard time-drawdown

Fig. 7 depicts dimensionless aquitard drawdown sD1(rD,zd, ts) =
(4pKrb/Q)s1(rD,zD, ts) variations with dimensionless time at dimen-
sionless radial distance rD = 0.2 and dimensionless aquitard eleva-
tion zD = �0.25 for different values of CwD. As with solution of
Mishra and Neuman [9] for non-leaky systems, aquitard draw-
down is impacted by pumping-well wellbore storage capacity. Lar-
ger wellbore storage factors result in increased capacity of the
wellbore to store water, resulting in a delay in the aquitard time-
drawdown, as indicated in Fig. 7.

Fig. 8 depicts the effect that changes in akD, the dimensionless
relative hydraulic conductivity exponent, have on dimensionless
time-drawdown at dimensionless radial distance rD = 0.2 and
dimensionless aquitard elevation zD = �0.25. For larger values of
akD, the unsaturated zone hydraulic conductivity decreases more
rapidly as pressure becomes more negative, relative to the thresh-
old pressure wk. A diminishing rate of water then drains from the
vadose zone into the aquifer; this drainage contributes to reduced
aquitard drawdown. For very large akD, unsaturated hydraulic con-
ductivity quickly decreases once pressure head is below wk, which
leads to an much less permeable unsaturated zone.

Fig. 9 shows the effects that changes in acD, the dimensionless
effective saturation exponent, have on dimensionless time-draw-
down at dimensionless radial distance rD = 0.2 and dimensionless
aquitard elevation zD = �0.25. When acD and akD are both large,
pressure head and hydraulic conductivity in the vadose zone
quickly reduce as pressure reaches the thresholds wk and wa.
The vadose zone can no longer store water, and the water table
essentially becomes a moving boundary, which leads to the lim-
iting-case behavior of instantaneous drainage due to Neuman
[27]. Consequently, for large values of exponents (Fig. 9, red
curve) the proposed solution reduces to that of Malama et al.
[24], which relies on the assumption of instantaneous drainage
of Neuman [27]. As acD decreases,the vadose zone has increased
capacity to store water, which diminishes the water table re-
sponse and aquifer drawdown increases, compared to that pre-
dicted by Malama et al. [24].
4. Conclusions

Our work leads to the following major conclusions:
1. A new analytical solution was developed for axially symmetric
saturated–unsaturated three dimensional radial flow to a well
with wellbore storage that partially penetrates the saturated
zone of a compressible vertically anisotropic leaky-unconfined
aquifer. The solution accounts for both radial and vertical flow
in the unsaturated zone and the underlying aquitard.

2. Because the solution considers three-dimensional radial flow in
the aquitard, any properties may be assigned to the aquitard,
allowing the solution to also be used to simulate leakage from
underlying non-aquitard layers (e.g., an unscreened aquifer
region with different hydraulic properties).

3. Aquitard leakage can lead to significant departures from solu-
tions that do not account for leakage, e.g., Mishra and Neuman
[9]. However, the effect of leakage on unconfined aquifer draw-
down diminishes at points farther away from the aquifer-aqui-
tard boundary.

4. Unsaturated zone effects are often more important than leakage
effects when the observation location is close to the water table.

5. For large diameter pumping wells, at early time water is with-
drawn entirely from the wellbore storage. Solution that do not
account for wellbore storage predict a much larger early rise in
drawdown.

6. Aquitard drawdown is also affected by the pumping-well well-
bore storage capacity. As in the unconfined aquifer, larger well-
bore storage capacity leads to larger impacts on the observed
aquitard drawdown.

7. The unsaturated zone properties not only affect the unconfined
aquifer time-drawdown behavior but they also impact the
observed aquitard response.
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Appendix A. Decomposition of saturated zone solution

In a manner analogous to Mishra and Neuman [5] we decom-
pose s into two parts

s ¼ sC þ sU ; ðA:1Þ

where sC is solution for a partially penetrating well in a confined
aquifer, satisfying

1
r
@

@r
r
@sC

@r

� �
þ KD

@2sC

@z2 ¼
1
as

@sC

@t
; r P rw; 0 6 z < b; ðA:2Þ

sCðr; z;0Þ ¼ 0; r P rw; ðA:3Þ

sCð1; z; tÞ ¼ 0; ðA:4Þ

@sC

@z

����
z¼ð0;bÞ

¼ 0; r P rw; ðA:5Þ

@sC

@r

� �
r¼rw

¼ 0; 0 6 z 6 b� l; b� d 6 z 6 b; ðA:6Þ

2pKrðl� dÞ@sC

@r

����
r¼rw

� CW
@sC

@t

����
r¼rw

¼ �Q ; b� l 6 z 6 b� d ðA:7Þ
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and sU is a solution that takes into account aquitard and saturated–
unsaturated unconfined conditions, but has no pumping source
term, satisfying

1
r
@

@r
r
@sU

@r

� �
þ KD

@2sU

@z2 ¼
1
as

@sU

@t
; r P 0; 0 6 z < b; ðA:8Þ

sUðr; z;0Þ ¼ 0; r P 0; ðA:9Þ

sUð1; z; tÞ ¼ 0; ðA:10Þ

@sU

@z
� Kz1

Kz

@s1

@z
¼ 0; r P 0; z ¼ 0; ðA:11Þ

@sU

@z

����
r¼0
¼ 0; 0 6 z 6 b ðA:12Þ

subject to interface conditions at water table,

sC þ sU � r ¼ 0; r P rw; z ¼ b; ðA:13Þ

@sC

@z
þ @sU

@z
� @r
@z
¼ 0; r P rw; z ¼ b; ðA:14Þ

where the first term is zero by definition of sC.

Appendix B. Laplace-space solution for saturated zone

Eqs. (A.8)–(A.14) are solved by sequential application of the
Hankel transform

f ðaÞ ¼
Z 1

0
rJ0ðarÞf ðrÞdr ðB:1Þ

and Laplace transform

f ðpÞ ¼
Z 1

0
f ðtÞe�ptdt; ðB:2Þ

with Hankel parameter a and Laplace parameter p, J0 being zero-or-
der Bessel function of the first kind.

The Laplace–Hankel transform of confined aquifer solution [9]
is

��sCða;zD;pDÞ¼C0
rw

a
J1ðarwÞK0ðrws0Þþ

s0rwJ0ðarÞK1ðrs0Þ�arwJ1ðarÞK0ðrs0Þ
a2þs2

0

� 	

þ
X1
n¼1

Cn
rw

a
J1ðarwÞK0ðrws0Þþ

snrwJ0ðarÞK1ðrsnÞ�arwJ1ðarÞK0ðrsnÞ
a2þs2

n

� 	

�cos½npð1�zDÞ�; ðB:3Þ

where s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSs=Kr

p
and sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSs=Kr þ KDn2p2=b2

q
.

The Laplace transform of Eqs. (A.8)–(A.14) is

1
r
@

@r
r
@�sU

@r

� �
þ KD

@2�sU

@z2 ¼
p
as

�sU ; 0 6 z < b; ðB:4Þ

�sUð1; z;pÞ ¼ 0; ðB:5Þ

@�sU
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����
z¼0
¼ Kz1

Kz

@�s1

@z
; ðB:6Þ

r
@�sU
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� �
r¼0
¼ 0; 0 6 z 6 b; ðB:7Þ

�sC þ �sU � �r ¼ 0; z ¼ b; ðB:8Þ

@�sC

@z
þ @

�sU

@z
� @

�r
@z
¼ 0; z ¼ b; ðB:9Þ

where the first term is zero by definition of �sC .
Taking the Hankel transform of Eqs. (B.4)–(B.9) yields
� a2��sU þ KD
@2��sU

@z2 ¼
p
as

��sU ; 0 6 z < b; ðB:10Þ

��sH þ ��sU � ��r ¼ 0; z ¼ b; ðB:11Þ
@��sH

@z
þ @

��sU

@z
� @

��r
@z
¼ 0; z ¼ b; ðB:12Þ

@��sC

@z
þ @

��sU

@z
� Kz1

Kz

@��s1

@z
¼ 0; z ¼ 0: ðB:13Þ

The general solution of (B.10) subject to (B.11) is

��sU ¼ q1egz þ q2e�gz; ðB:14Þ

where q1 and q2 are coefficients to be determined from boundary
conditions.

Considering that @��sH=@z ¼ 0 at z = 0 and z = b by virtue of (A.5)
and that

@��r
@z

����
z¼b

¼ qð��sC þ ��sUÞz¼b; ðB:15Þ

which, together with q, are derived in (D15) of Mishra and Neuman
[9] and

@��sU

@z

����
z¼0
¼ q1ð��sC þ ��sUÞz¼0; ðB:16Þ

which, together with q1, are derived in (C.7) we obtain from Eqs.
(B.11)–(B.13)

q1 ¼
q1ðgþ qÞe�gb��sCðz ¼ 0Þ � qðgþ q1Þ��sðz ¼ bÞ

D
; ðB:17Þ

q2 ¼
q1ðg� qÞe�gb��sCðz ¼ 0Þ � qðg� q1Þ��sðz ¼ bÞ

D
; ðB:18Þ

where D = (g � q1)(g + q)e�gb � (g � q)(g + q1)egb.
The inverse Hankel transform of (B.14) is

�sU ¼
Z 1

0
ðq1egz þ q2e�gzÞaJ0ðarÞda: ðB:19Þ

Defining a new variable y ¼ ar=K1=2
D rD transforms (B.19) into the re-

sult presented in (21). It is noted that when q1 = 0 the aquitard is re-

placed by an impermeable boundary, and q1 ¼ q2 ¼
2��sC ðz¼bÞ

coshðgbÞ�g
q sinhðgbÞ .

These simplifications reduce (B.19) to Eq. (3) of Mishra and Neuman
[9].

Appendix C. Aquitard solution

Laplace–Hankel transform of governing flow equations for aqui-
tard are

�a2��s1 þ KD1
@2��s1

@z2 ¼ p
Ss1

Kr1

��s1; 0 6 z < �b1: ðC:1Þ

By virtue of no flow boundary at the bottom of the system,
@��s1
@z

���
z¼�b1

¼ 0, the general solution to (C.1) is

��s1 ¼ q1 cosh½g1ðzþ b1Þ�; ðC:2Þ

where g2
1 ¼ a2

KD1
þ pSs1

Kr1KD1
.

The boundary condition

��s1ðz ¼ 0Þ ¼ ��sðz ¼ 0Þ ¼ ð��sC þ ��sUÞz¼0 ðC:3Þ

gives

s1 ¼
ð��sC þ ��sUÞz¼0

coshðgb1Þ
cosh½g1ðzþ b1Þ�: ðC:4Þ

Using (B.13) transforms (C.4) into the solution presented in (22).
The derivative of (C.4) is
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d��s1

dz
¼ g1 tanhðg1b1Þð��sC þ ��sUÞ z ¼ 0: ðC:5Þ

The flux boundary condition at the aquifer–aquitard interface

@��s1

@z

����
z¼0
¼ Kz

Kz1

@��s
@z

����
z¼0
: ðC:6Þ

Combined with (B.9) gives

@��s
@z

����
z¼0
¼ q1ð��sC þ ��sUÞz¼0; ðC:7Þ

where q1 ¼ Kz1
Kz

g1 tanhðg1b1Þ.

Appendix D. Laplace transformed unsaturated zone drawdown

Laplace transformed drawdown �r in the unsaturated zone are
given by Mishra and Neuman [9] as

�rðrD; zD;pDÞ ¼

R1
0 eakDðzD�1Þ=2 Jn ½i/ðzD�1Þ�þvYn ½i/ðzD�1Þ�
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DKD
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DKD
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where rD ¼ r=b; zD ¼ z=b; l2 ¼ y2 þ pD
tsKDr2

D
; ts ¼ ast=r2; as ¼ Kr=Ss;

qD ¼ qb; akD ¼ akb; acD ¼ acb; /ðzDÞ ¼
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4BD

k2
D

q
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d1D;2D ¼ d1;2b ¼ jD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

Dþ4ðBDþy2Þ
p

2 ; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

kD
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r
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dimensionless quantities, p being the Laplace transform parameter;
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where CðnÞ ¼ rwD/nJ0ðyDÞK1ð/nÞ�yDrwDJ1ðyDÞK0ð/nÞ
l2þn2p2 ; yD ¼ yK1=2

D rD; J0 and J1

being Bessel functions of first kind and, orders zero and one; and

v ¼

� ðakDþnkDÞJn ½i/ðLDÞ��2i
ffiffiffiffiffiffiffiffiffiffiffiffi
BDekDLD
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� i

ffiffiffiffiffiffi
BD
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where LD = L/b, Jn and Yn being first and second kind Bessel functions
of order n.
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